What Is Test Data Management

Test Data Management! The Anatomy & five tools to use.

Being part of the IT leadership in an organization has its advantages, but it also means you have to be familiar with technical “buzzwords”.

  • “Test Data Management” is one such term you might come across.

Do you know what it means and why TDM matters? And what about the available test data tools you can employ? If the answer to one or more of these questions is “no”, then this post is for you.

Let’s start by dissecting the expression into its various body parts. We’ll define each one and then reassemble the definitions. Once we’re done defining the term, we’ll get into the meat of the post by showing five existing test data tools that can help with test data management. Let’s get started!

Test Data Management: Breaking it Down

Let us break it down into its key components i.e. Test, Data & Management.

A definition of Testing.

Software testing is an investigation conducted to provide stakeholders with information about the quality of the software product or service under test. Software testing can also provide an objective, independent view of the software to allow the business to appreciate and understand the risks of software implementation. Test techniques include, but are not limited to, the process of executing a program or application with the intent of finding software bugs (errors or other defects).

A definition of Data.

Test data, unlike the sensitive data found in our production data, is any data that’s necessary for testing purposes. This includes test data for inputs, expected test data outputs, and test environment configuration details. Test data can come from a variety of sources, including production databases, synthetic data generators, and manual input.

A definition of Management

Management is the process of administering an organization, which can be a business, non-profit, or government body. This entails setting the organization’s goals and objectives and then coordinating the efforts of employees or volunteers to achieve these targets. The available resources that can be employed include financial, natural, technological, and human resources.

Bringing TDM Together

Now that we have the definitions for each word, it’s time to put all of them together to create a complete definition for “test data management.” Here it goes:

  • Test Data Management (TDM) is fundamentally test data preparation. It is the process of helping you prepare test data and maintain the test data in support of software testing. The goal of TDM is to provide a test environment that is as close to production as possible, and promotes data security while still being able to accurately test the software.

This may include, but is not be limited to underlying features like:

  • Test Data Profiling i.e. The Process of Discovery & Understanding your Data.
  • Test Data Preparation i.e. Generation of Realistic Test Data Using Automation to Fabricate Fake / Synthetic Data.
  • Test Data Security i.e. Using Production Data & Masking / Privacy Methods on the original production data. With the intent of ensuring “Personally Identifiable Information” (sensitive customer data) is removed and we prevent a data breach.
  • Test Data Provisioning i.e. Rapid Snapshotting, Cloning & Provisioning of Test Data/
  • Test Data Mining i.e. The ability to View and Access Valid Test Data.
  • Test Data Booking i.e. the ability to reserve Test Data for your engineering purpose

Here Are 5 Test Data Management Tools for Your Review

Here are five Data Generation Tools your organization can use to improve its approach to Test Data.

BMC (Compuware) File Aid

Compuware’s Test Data Management solution offers a standardized approach to managing test data from several data sources. Test Data Management with Compuware seeks to eliminate the need for extensive training by making it easy to create, find, extract, and compare data.

The solution can load subsets of related production data while maintaining database and application relationships. Test data management can help reduce the risk of errors, improve product quality, and shorten development timelines.

Broadcom (CA) Test Data Manager

Test Data Manager by Broadcom is a powerful test data management tool that enables organizations to manage their testing data more effectively and efficiently. Test Data Manager provides users with the ability to track, manage, and visualize their testing data in a centralized repository. Test Data Manager also offers features for managing test environments, managing test cases, and generating reports.

Enov8 Test Data Manager (DCS)

Enov8 Test Data Manager, originally known as DCS (Data Compliance Suite), is a Test Data Management platform that helps you identify where data security exposures reside, rapidly remediate these risks without error and centrally validate your compliance success. The solution also comes with IT delivery accelerators to support Data DevOps (DataOps), create test data, data mining, and test data bookings.

IBM InfoSphere Optim

IBM InfoSphere Optim is a tool that manages data at the business object level while preserving the relational integrity of the data and its business context. This allows you to easily create environments that precisely reflect end-to-end test cases by mirroring conditions found in a production environment.

InfoSphere Optim also offers other features such as data masking, ensuring data security, and subsetting, which can further help you reduce the risk of data breaches when testing in non-production environments.

Informatica Test Data Management

The test data management solution from Informatica, Test Data Management, is a tool that can identify ‘sensitive data,’ subset it, mask it, and create test data. It also allows developers and testers to save and share datasets to enhance overall efficiency.

Conclusion

As previously said, there are a lot of “buzzwords” in software engineering, and that trend isn’t going to change any time soon. Some of these words are simply fads. They seem like the “latest and greatest thing.” But just as quickly as the hip kids started using them, they fall out of favor.

However, Test data management isn’t one of those fads. It’s a process that your company must master and improve if it wants to stay competitive and promote values like Data Privacy. Test Data Management is essential in the understanding of data, it impacts our IT operations & project velocity & is key to our information security protocols.

In this article, we used a divide and conquer technique to define test data management. Test data management is the process of handling test data throughout the software development life cycle. Test data management tools help organizations manage this process by providing a way to store, track, and manipulate test data. There are many different test data management and data security solutions available on the market, each with its unique features and capabilities. So have a look & choose. Each is powerful and has its nuances. Look at the capabilities of each and decide which of the “Test Data Management” features are most important to you.

Author: Mark Dwight James

This post was written by Mark Dwight James. Mark is a Data Scientist specializing in Software Engineering. His passions are sharing ideas around software development and how companies can value stream through data best practices.

VSM Need for Speed

Test Environments: How to Value Stream DevOps With TEM

For many organizations, DevOps is the best practice for efficiency. However, this model doesn’t come easily as the organization needs to put certain things in place. For example, the firm needs to incorporate the right tools to ensure its delivery pipeline and feedback loop are working as expected. Many firms get it all wrong when there’s a problem in their delivery pipeline or feedback loop. This will cause issues for the firm as there’s a loss of time and an overall reduction in efficiency.

To avoid an occurrence like this, firms need to ensure their DevOps model is efficient and adds value to customers. For these reasons, firms adopt the test environment management (TEM) model to check that their model works as expected. Sometimes, this may seem like a lot of work if not done correctly.

In this article, we will explore what test environment management is and how an organization can use it to measure and add value to a DevOps model. First, we’ll define DevOps, the value stream, and test environment management. Then, we’ll explain how and why you should value stream DevOps with TEM.

Defining Our Terms

To get us all on the same page, let’s discuss DevOps, the value stream, and test environment management.

DevOps

A company’s first priority should be satisfying their customers’ needs. For software organizations, this involves shipping out features to end users as quickly as possible. To do this, software engineers make use of the DevOps model. DevOps consists of rules, practices, and tools that let the software engineering team deliver products to end users faster than traditional methods would allow. In conventional methods, the people responsible for a project’s operation and the people responsible for a project’s development are on distinct teams. This isn’t the same for DevOps. In DevOps, development engineers and operations engineers work closely together throughout the application life cycle. This structure decreases handoffs, waiting time, and communication breakdowns to create a speedy development cycle.

The Value Stream

When developing or improving products for end users, companies need to understand what their customers really want. A company might add new features to their product, but the new features won’t help them if they don’t speak to the users’ needs. Some features, if shipped to users, might reduce customer engagement with your product because they’re not wanted or broken. It’s discouraging to develop a feature tirelessly only to find out that users don’t like it. How do you know that your features will please your customers? This is where the value stream comes into play. A value stream is the sequence of steps an organization takes to develop software. Ideally, each step in the development cycle adds value to the product. By analyzing their value stream, an organization can learn which development stages provide the most return on investment and which could be improved. For example, if your value stream includes a long wait time between building code and testing the code, you can guarantee that reducing the wait time between these stages will add value to your product. Value streams help the firm measure, monitor, and incorporate what will bring value to customers at the end of the day.

Test Environment Management

Before shipping new features or products to users, it’s a good practice to test their functionality. Developers should know how responsive their application is from the perspective of a user. For example, you don’t want a part of your product to be broken, unresponsive, or inaccessible. Such features will deter customers from using your product and may lead to negative reviews, which deter customers even more. To test software’s functionality before shipping it to users, engineers make a test environment. A test environment is like a simulator: it allows you to imitate your application’s operation and functionality. Basically, you’re seeing your product and interacting with it as a user would. The testing environment has maturity levels, which are different protocols and practices depending on the state of your app you can follow when testing your application functionality. TEM consists of sets of procedures or guides that help developers create valid and stable test environments for their products. It allows you to control the test environment itself through things like communication, test cases, automation, bug detection, and triage. For example, you may want to test the overall responsiveness of your product. To do this, you first have to test the functionalities of smaller features. Next, you’ll have to review product defects and implement measures for optimization.

Putting It All Together: Value Stream DevOps With TEM

Now that you know what DevOps, the value stream, and TEM are, it’s time to learn how they can work together to help you innovate and delight your user base.

Focus on Time and Value

There are a lot of things to consider when shipping products to users. These can be summed up into time and value. Let’s imagine a case where a firm ships a feature to users on time, but it’s unresponsive. While time was met in delivering this feature, value wasn’t. At the end of the day, you get unsatisfied customers who won’t be happy at the firm’s choice of feature. Another case is when the company doesn’t ship features on time. When this happens, you get angry customers who don’t seem to understand why it’s taking your team so long to release new features. For software firms to really up their game, they have to ship features that add value to customers at the right time. However, the processes of DevOps, value streaming, and TEM will prevent these things from happening. These three methods create automatic checks in your software development cycle that stop you from pursuing projects customers won’t like. And guardrails will keep you on schedule to deliver products in a timely fashion. This might sound complicated, but it’s easy to get started.

How to Value Stream DevOps With TEM

In this section, we’ll explore ways to ship features that add value to users at the right time through a combination of DevOps, value streaming, and test environment management. These are ideas for you to start devising your own DevOps–value stream–TEM strategy.

Logging and Testing

Often, it’s difficult to aggregate logs during the developmental stage of a product. Most developers don’t find out that the tools they use for logging don’t aggregate logs properly until they’re in the right test environment. For an application that depends hugely on logging and tracing, this may be a problem for users. Black box testing also doesn’t allow developers to see the products from the customer’s perspective. There could be bugs in the application’s UI which may be overlooked. Some of these bugs cause unresponsiveness—which, as we discussed, can spell disaster for a product. All these can be mitigated when developers incorporate the right test environment.

Elimination of Redundant Procedure

Numerous firms make the mistake of incorporating redundant and wasteful processes in the development stage when there’s no test environment management. Developers can fish out and eliminate redundant and wasteful procedures with test environment management. This will save the firm time and money, creating value for customers.

Visual Representation and Process Clarity

Visual representation and clarity are another way to value stream DevOps with TEM. Test environment management provides developers with a visual representation of each feature and how much value it adds to the product, thereby clarifying which elements are vital to a product’s success and which could be improved.

Maturity Levels

Maturity levels tell the engineers the next step to take when testing a product. Policies are written for each step and every unit of the application tested. The engineer isn’t testing the application by intuition or suspicion. Rather, there’s a carefully planned guide on how to best test the application. It’s imperative to understand and apply different maturity levels because it allows developers to measure the readiness of their test environment and define the process they’ll use in test environments.

Feedback Loop

After shipping products to users with the DevOps model, there’s a feedback loop. The feedback loop involves monitoring responses from users and incorporating that feedback as a feature in the next release. Feedback loops help developers determine what kind of feature and test environment they’ll be working on and the type of test policies to write in the different maturity levels.

Integrate TEM and DevOps Seamlessly

DevOps remains one of the best models software engineers use to ship products to users. In this article, we have explored how engineers can ship products that add value to users at the right time with test environment management and value stream mapping. These practices give rise to several strategies for improving the time spent on features and value delivered by features, including logging and testing, eliminating redundancies, visually representing the product, assessing the feature’s maturity, and creating a feedback loop. Test environment management can become an overwhelming task if you don’t use the right tools and procedures. For example, there’s the difficulty of choosing the right test environment and eradicating redundant procedures. You can integrate DevOps in the right test environment easily with test environment management resources from Enov8. These resources offer various tools like data sheets, visuals, case studies, and white papers to help integrate your DevOps model in the right test environment.

Author

This post was written by Ukpai Ugochi. Ukpai is a full stack JavaScript developer (MEVN), and she contributes to FOSS in her free time. She loves to share knowledge about her transition from marine engineering to software development to encourage people who love software development and don’t know where to begin.

Measuring Test Environment Maturity

Measuring Your Test Environment Maturity

The goal of every company is to satisfy its users. This certainly applies in the software industry. However, as the number of users increases, they tend to make more demands. Increased demands will increase how complex software is, as these demands may require adding new features. And of course, software firms try hard to control defects in their products whenever they add a new feature.

Nevertheless, the industry is still far from zero defects. To avoid defects in products shipped to users, firms in the software industry must pinpoint defects in their test environment before shipping products to users.

What’s a test environment, and how are developers making sure that they can find and cure defects in that environment? We’ll discuss both topics in this article.

What Is a Test Environment?

A test environment is like a simulator that provides real-life visual representation. It includes a server that allows developers to run tests on their software.

A test environment also allows developers to include hardware and network configuration. The purpose of this is to let the test engineer mimic the production environment so that they can find defects. Also, test engineers can write custom tests and execute them in the test environment. This lets test engineers ensure that the software is responding as it ought to.

Let’s look at how test engineers make sure their test environment mimics the production environment. When that happens, the team can remove issues and defects from software before shipping it to users.

What Is Test Environment Maturity?

Test environment maturity is a set of leveled guides that help test engineers determine how well-developed and rigorous their testing system is. Test engineers need to understand how the products they’re about to test actually function. The engineers should also be able to define the process they’ll use in test environments and manage those environments. And there are different levels of test environment maturity.

To understand test environment maturity better, let’s look at the Test Maturity Model (TMM). We’ll examine the different levels and find out how test engineers can measure environment maturity.

Test Maturity Model (TMM)

In order for test engineers to manage their test processes properly, the Illinois Institute of Technology developed the TMM framework. This framework works well with the Capability Maturity Model (CMM), which is the industry standard for software process development.

The TMM framework defines five maturity levels so that test engineers can manage their testing processes properly. These maturity levels help test engineers identify the next improvement state in their test environment.

Test engineers can’t measure their test environment maturity if they don’t know the level of maturity of their test environment. This is exactly what the TMM maturity level does. It displays levels of maturity and the steps required to attain each level.

Maturity Levels

Each maturity level consists of steps that are essential to attain test environment maturity. Let’s look at the different TMM maturity levels and consider how test engineers can measure their test environment maturity.

1. Initial Level

In the first level in the TMM framework, the goal of the test engineer is to ensure that the software is running successfully. The goal here is simply to make sure that the software developers have developed a working product. Although TMM doesn’t identify any process area for this level, the software should be working fine without breaking. So Level 1 has a low bar!

2. Definition Level

Definition is the second maturity level in the TMM framework. In addition to ensuring that the software is running successfully in the test environment, the test engineer needs to define test policies. This is because at this maturity level, basic testing methods ought to be in place. You’re trying to answer the question, “Does the software do what it’s supposed to?”

The different process area that this level identifies are:

  • Test policies and goals: This is to make sure that test engineers specify goals and policies they need to achieve.
  • Test methods, techniques, and environment that test engineers are using: It’s essential to spell these out.

3. Integration Level

This level involves the integration of testing methods, techniques, polices, and environment defined in the definition level. It’s necessary to do this so test engineers can determine software behavior. During the integration level, the engineers test life cycle and integration. Completing this step ensures testing is organized and carried out in a professional manner.

4. Management and Measurement Level

This TMM maturity level ensures that test engineers carry out quality test processes. At this stage, developers can evaluate and review software for defects. For example, after the integration level, the test engineers need to make sure they pick out all of the defects. The process areas this level identifies are test measurement, evaluation, and reviews.

5. Optimization Level

This is the final level. At this stage, the aim is to ensure that test processes and environment are optimized. This maturity level is important because testing isn’t effective unless defects are controlled. In this level, the team members figure out how to prevent defects. The process areas in this level are test improvement, optimization, and quality control.

Best Practices in Measuring Test Environment Maturity

We’ve explored the different maturity levels for TMM and discussed how this model is the industry standard for software testing. In this section, we’ll explore the best practices for measuring test environment maturity.

Hire a Test Engineer

A test engineer is in charge of carrying out tests on software to make sure it performs as expected. It’s important to employ a test engineer to manage software testing. Why? Because a qualified test engineer is highly skilled in using the right test environment, techniques, and tools.

Understand the Test Maturity Model

When you employ a test engineer for your firm, make sure that they understand the test maturity model. This is because they can’t measure what they don’t understand! Fully understanding the test maturity model will enable the test engineer to determine which processes are covered in each level and precisely what level their test environment has gotten to.

Don’t Skip Steps

It’s a bad practice to skip or merge different levels of the maturity models. This will not only make software testing confusing, but it may also produce adverse test results. Therefore, direct test engineers to write down the maturity levels and proposed date of completion before beginning to test.

Automate Testing

When test engineers automate testing, it becomes easier and faster to measure test environment maturity. For example, this test environment and management tool from Enov8 allows test engineers to automate tests and manage test environments without a hitch.

Measuring Test Environment Maturity Goes Better When You Understand Test Environment Management

Knowledge of TMM maturity levels isn’t enough to measure test environment maturity properly. To do so, test engineers need to be familiar with test environment management (TEM) and how it applies to TMM. So, let’s explore TEM.

Test environment management, according to Enov8, is the act of understanding IT environments across the life cycle and proactively controlling them to ensure they’re effectively used, serviced, and deleted promptly. With test environment management, test engineers can easily analyze software capability. This is because proper test environment management allows test engineers to measure test environment maturity properly. For this reason, there are tools like Test Environment Management Maturity index (TEMMi) to help firms understand test environment management.

Author

This post was written by Ukpai Ugochi. Ukpai is a full stack JavaScript developer (MEVN), and she contributes to FOSS in her free time. She loves to share knowledge about her transition from marine engineering to software development to encourage people who love software development and don’t know where to begin.